Session 2024 Key take away SC A1

Content

- 1. Synchronous condensors
- 2. Changing grid characteristics
- 3. Monitoring / Maintenance
- 4. Sustainability / Carbon footprint
- 5. Small "things", large consequences
- 6. Protection
- 7. E-mobility

Synchronous condensors

- Salient pole machines are better suited as synchronous condenser
 - Reluctance torque increases operating range
- Extension of leading operating range by negative excitation current
 - Single or double bridge
 - How to transfer from positive to negative current
- Flywheels
 - Safety
 - Choice on speed
- Need of specific standard for synchronous condensors
- Influence of step-up transformer

Changing grid characteristics

- Increased harmonic distortion
- Less stable frequency and voltage
- Larger voltage range
- Consequences:
 - Influence on existing, older equipment
 - Need to modify standards for rotating machines
 - Modified design for new machines

Monitoring / maintenance

- Increased introduction of AI and deep learning in monitoring
 - Particularly in the wind turbine business
 - Mechanical behavior:
 - Bearing vibrations
 - Aerodynamic imbalance
 - Shaft (brush) grounding
- Repair of stator winding insulation in situ
 - Necessary or not?
 - Sufficient results?
 - Fault finding
 - Secondary damage: ozone production!

Sustainability / Carbon footprint

- Awareness for the necessity to investigate
 - Total cost of life
 - Reuse of material
 - Design life
 - Second life?

Small "things" leading to large consequences

- Typical issues
 - Mistakes during maintenance
 - Wrong type of bolt material (magnetic steel versus stain less steel)
 - Improper torquing
 - Leaking seals
 - Neglecting brush wear
 - Mistakes during design / construction
 - Bad locking set screws
 - Improper bleeding pressure measurement devices
 - Using the wrong design drawings

Situation

- Water pump station
 - Built 2009, in service from half 2012
 - 5 asynchronous motors
 - Rating: 11 200 kW, 11 kV, 1493 rpm, 50 Hz, air/water cooled
 - Starting: Direct on Line
- Motor failure end October 2012
 - Differential protection 11 s after start
 - Two additional unsuccessful attemps to start
 - Stator winding failed

Inspection findings after failure

Construction

- Aluminum short circuit ring (D = 1 m)
- Nickel aluminum bronze retaining ring (CuAl11FeNi4)
- Steel hexagon socket set screws (M8x25)

Consequences

Cigre For power system expertise

- Failed motor (39 tons)
 - Shipped back to OEM (4200 nautical miles, 6 weeks one-way travel)
 - GVPI stator winding: new built including stator core
 - Rotor repaired
- Other 4 motors
 - On-site inspection with rotor (10 tons) withdrawal

Protection

- Arc flash protection in generators
 - Detection of failures that otherwise cannot be detected

E-mobility (source: IEEE)

- Developments in EV traction motors
 - Avoid dependence on rare earth permanent magnets
 - Use non-rare earth PM's
 - Low temperature magnets -> motor designs with improved cooling
 - New development: wound rotors
 - Field control is possible
 - Less temperature restriction compared to PM's
 - Rotating rectifiers built in the shaft to avoid sliprings