SC B4 – Key Takeaways Nadew Belda (PhD), TenneT TSO

For power system expertise

Key Takeaways - Outline

- Overview (statistical) of SC B4 Papers
- SC B4 Workshop Interoperable Multi-Terminal HVDC Systems From Dream to Reality
- □ New HVDC Projects: Which Technology LCC Vs VSC HVDC
- (End of life) Operational Projects: Refurbish (existing technology) Vs Upgrade to new technology
- Interaction between HVDC systems in the same synchronous area
 More and more HVDC in the system means high chance for control interactions
- Grid Forming hot-topic of SC B4
- SC B4 meeting
 - ➢ Brief updates
 - Future events

Overview of SC B4 papers and contribution

- Three Preferential subjects
 - 1. DC Equipment and Systems
 - 2. FACTS and Power Electronics
 - 3. New Technologies and Concepts

Planning, design, performance, testing and commissioning

Nearly 100 papers have been received, reviewed to improve quality and accepted
 > Includes 5 NGN contribution

▶97 posters are prepared

- Nearly 100 prepared contributions submitted
 >60 have been accepted due to time limitation
 - Several spontaneous contributions

Preferential Subjects

PS1: DC Equipment and Systems (53 papers)
 PS1.1: DC equipment (26 papers)

- PS1.1-1: LCC & Hybrid HVDC (8 papers)
- PS1.1-2: VSC HVDC (11 papers)
- PS1.1-3: Offshore HVDC (7 papers)
- PS1.1-4: Multi-Terminal & DC Grids (10 papers)
- >PS1 1-2: Refurbishment and upgrade of existing DC systems (7 papers)

>PS1.3: Service and operating experience (**10 papers**)

PS2: FACTS and Power Electronics

>PS2.1: FACTS and other PE devices including inverter-based generation (**11 papers**)

- PS2.1-2: STATCOM & SVC (3 papers)
- PS2.1-2: Power Electronic Devices and Other FACTS Devices (8 papers)

Preferential Subjects...

PS2: FACTS and Power Electronics ...

PS2.2: Refurbishment and upgrade of existing FACTS and other PE devices (3 papers)
 PS2.3: Service and operating experience (3 papers)

- PS3 New Technologies and Concepts Enabling Energy Transition
 PS3.1: Grid-forming converters, multi-vendor interoperability (21 papers)
 - PS3.1-1: Modeling & Analysis for new technologies/concepts (13 papers)
 - PS3.1-2: Network Integration & Application of new technologies (9 papers)
 - PS3.2: New Concepts, Technologies and design of DC converters and PE devices including interfacing of generation and storage to the network, energy hubs/islands, etc. (11 papers)

2024 SC B4 Paper Distribution

B4 Workshop: Interoperable Multi-Terminal HVDC Systems From Dream to Reality

- **4** German TSO Innovation partnership
- □ InterOpera project Focus on Multi-Vendor Inter-Operability
- Project Aquila Similar to InterOpera but UK based (National HVDC Centre Scotland)
 Interoperability, DCSS, procurement, regulatory and commercial aspect
- □ North American Perspective with focus on the need for standardization
- □ Experience in China → Multi-vendor projects → Zhoushan, Zhangbei
 ▷ Standardization and verification are key challenges
- Standardization aspects
- Focus on the need for developing common Language between different stakeholders
 Defined architecture and interfaces
 Defined functions along with parameters
- □ Vendor insights, modular development

Innovation Partnership – R&D

- □ 4 German TSOs involved: 50 Hz, Amprion, TenneT, and TransnetBW
- Vendors
 - ➢ Hitachi energy
 - Siemens Energy (with Mitsubishi)
 - ► GE Grid Solutions (with Supergrid Institute)
- Development of single-vendor Multi-terminal DC with DC Circuit Breakers
 - ➤ 525 kV bipole with metallic return
 - ➤2 GW power per converter station
- Three DC hubs identified
 - ≻HeideHub
 - NordWest hub
 - ➢NordHub

InterOpera Project

- Functional Requirements of Grid Forming in Multi-terminal Multi-vendor environment: aimed at
 - Common understanding of what GFM
 - ➤What are GFM capabilities
 - Common validation procedures
- Demonstrator
 - ≻525 kV, Bipole with DMR, 2 GW power
 - With DC-FSD, stand-alone DC switching station
 - ➤Two synchronous areas
 - Multiple operation modes (rigid bipole, asymmetric monopole, bipole with DMR)

HVDC Technology for future projects: LCC Vs VSC HVDC

- **For which applications is LCC still relevant?**
- □ What are the advantages of LCC or Improved LCC?
- □ Today VSC HVDC → Power rating between 3 5 GW or more can be achieved
 > Losses comparable to LCC
 - ➢ Power transfer capability comparable to LCC
 - Several ancillary services
- **TSOs in different parts of the world contributed their experience**
 - Some considering replacing LCC by MMC VSC during refurbishment (Brazilian TSO, Manitoba hydro in Canada)
 - ► In China improved LCC Controllable LCC (CLCC) is introduced
- Suppliers recommend VSC

Chinese Experience

- LCC in new projects for bulk power transmission, point-to-point, string grids and cost-sensitive scenarios
 - ➤ 5 new LCC HVDC systems have been commissioned at ±800 kV since 2019
- MMC VSC for weak grids and HVDC Grids high cost, lower overload capacity compared to LCC
- New HVDC Technologies IGCT based LCC → immune to commutation failure
 - Can refurbish existing LCC on 1:1 bases in terms of volume

Refurbishment/upgrade – LCC to CLCC

Supplier Perspective

- □ VSC HVDC can cope-up with changing AC grid compared to LCC
 - Independent control of reactive and active power capability
 - > Operation within weak networks and integration of renewables
 - > Ancillary services e.g., system restoration black start capability
 - Low harmonics generation limited (no) need for filters
 - Grid forming capability
 - Expansion to multi-terminal DC grid
 - Grid code compliance can only be achieved by VSC MMC in many countries
 - Flexible, adaptable and scalable power rating
 - For example, 600 kV bipole systems in the design
 - Power transfer limit determined by AC network stability single largest contingency

Refurbish Vs Upgrade →**nsight from Brazil**

The MMC based on full-bridge submodules which has capability of blocking short-circuit current during DC fault

- Studying what is the best technical (recovery after fault), economical
 - > One pole at a station
 - > Two poles at a station or replace everything with MMC VSC
- □ Including VSC technology certainly improves performance

Refurbish Vs Upgrade → Canadian Insight

- Bipole I and II are reaching end of Life
- Considering replacing one of the Bipoles with VSC technology
- Replacement of VSC is feasible
 - Notable drawback is during DC line fault of the VSC
 - Due to voltage drop (<100 ms)</p>
 - Lead to commutation failure
 - > will impact system frequency
 - The chance of DC line fault is high due to considerable length

Interaction between HVDC systems → EirGrid Experience

- Experience shared by EirGrid VSC (EWIC) fault impacting LCC (Moyle)
- □ 500 MW VSC HVDC tripped (Ireland $\leftarrow \rightarrow$ Scotland)
- Sub-synchronous Torsional Interaction (SSTI) protection picked up by nearby Moyle LCC (an interconnector) (total 880 MW power lost)
- Immediate response from batteries (BESS) arrested frequency drop
 - Avoided load shedding
- Interaction between IBRs present real risk to power systems
- Additional enhanced modelling required to capture these events in study tools
- Lessons learned to be used for fine tuning of designing new technologies

Interaction between HVDC systems \rightarrow Japanese Experience

- Hokkaido-Honshu HVDC system
 - One is built in 1979 (600 MW, ±250 kV LCC, Bipolar system
 - The other is built in 2019 (300MW, 250 kV, VSC asymmetric monopole)
 - Over-voltage caused by residual reactive power at LCC (due to AC filters and Shunt capacitors) after clearing AC fault seen at VSC
 - This study is essential to determine operational limits of both HVDC systems
 - AC voltage drop caused by DC faults at VSC
 - Observed during study and confirmed that it does not cause LCC to trip

Interaction between HVDC systems → Developer Insights

- Stressed on the importance of control interaction studies
- Study scope not only limited to HVDC but also STATCOMS, Large windfarms, PVs
- Main challenges
 - Study methodology
 - > Availability of reliable models
 - Scope and responsibility split between different parties

Importance of Simulation...

- Suggestion on who should build, maintain the EMT models and how often?
 - Vendor can create original model
 - > After delivery of the project, the end user shall oversee updating
 - When new equipment is added, or eliminated or if operation conditions change
 - > The detail of the model depends on the purpose of study

Grid Forming (GFM), Synchronous Grid Forming (SGFM)

- Definitions There is no clear definition, requirement
 - GFM functionality is already there before the terminology
 - Offshore (f and v support), supporting extremely weak AC grids, black start, feeding offshore loads)
 - Capability of a converter to be able to operate in low or zero inertia rather than providing certain inertia (supplier definition)
 - Emulating synchronous generator is not a purpose of GFM, rather supporting the connected AC system with maximized performances
 - HVDC cannot provide inertia just by its control
 - Fast active power control can be counter measure for the diminished inertia
 - Main objective is to support Grid Stability by inherently counteracting the ac grid disturbances – mimicking the response of conventional synchronous generator

Grid Forming Requirements

- Flexible control of HVDC can be just one of the necessary control
 Deploy "storable and dispatchable" resources such as BESS
 Flexible loads/dispatchable loads, e.g., hydrogen plants, battery chargers
- Strong need to standardize GFM requirements for all technologies (HVDC, FACTS) considering actual needs of the AC grids and capability of converters
- Clear difference between GFL and GFM objectives
 - ➢ GFL an asset for transmission solely (HVDC)
 - ➢ GFM an asset for grid stability enhancement (HVDC, SVC, and SVC-FS)
- Several Working Groups are involved
- Grid forming for new HVDC projects, STATCOMs with/out energy storage
- A requirement for both GFM and GFL control modes
 - Requires different converter designs and may result in suboptimal design

Grid Forming requirements...

- Transient stability, fault current injection, weak grid support, etc.
- Specific requirements determined by grid codes
- Standardize technical specification and performance requirements for GFM systems
- GFM control is supposed to emulate the characteristics of conventional synchronous generators
 - Limitation is the energy stored in the capacitors

SC B4 meeting - Updates

- New WG/TF Proposals
 - Grid Forming Capabilities and Technical Requirements of Wind Farms Converner: X. Zhou (UK)
 - Recommended to oversee and coordinate all GF related WGs
 - Already number of WGs on GFM \rightarrow C2/B4.43, B4/C4.93 and B4.87
 - BESS that touches the same topic
- Ensure internal coordination process review by experts already at very early stage
- Avoid negative impact on projects by defining unfeasible requirements
- □ Some Liaison with IEEE There is a lot ongoing on GFM
- In C4 there is also some activity on grid forming looking from the system perspective
 B4 focuses on equipment like converters, inverters in wind turbines, batteries
 - > On the other hand topics need to evolve, knowledge dissemination

HVDC compendium, Green Book

- HVDC Compendium
 - List of reference projects worldwide with all detailed information (Better than overview available in Wikipedia)
 - List of planned projects, actual projects, data (power, voltage, technology, topology, configuration, number of terminals, supplier, end user, etc.)
 - > A kind of live document that is updated regularly
 - NCs are requested to provide information from
- SC B4 Greenbook
 - ≻54 chapters
 - ➤ 33 chapters have been published
 - ▶2 more in the next few weeks

SC B4 Newsletter – Quarterly newsletter since 2022

- □ 8 newsletters since 2022
- Typical topics
 - Recent B4 activities and upcoming events
 - Updates on ongoing WGs
 - New Working Groups (WGs) and Task Force(s)
 - News on HVDC projects and status
 - Insights on new projects/technologies

NewsLetter

- > New developments of power electronic based device and systems
- > B4 activities performed by Cigre national committees
- Convener can provide a short update on their current WG
- Latest news on HVDC projects and status
- > Any suggestions/ideas and questions on B4
- AG 03: Communications and SC B4 Website

Upcoming Events

- □ Norway NC Cigre Symposium in Trondheim, Norway
 - Call for paper is already out
 - Deadline September 12, 2024
 - ➤ May 12 -15, 2025
- □ Cigre 2025 Symposium in Montreal, Canada (B4/B2 Lead)
 - September 29 October 2, 2025
 - Invitations
- Israel NC delayed
- □ India NC 2027 or 2029 symposium
- China NC -
- □ Call for proposals for future meetings
- New WG proposals
- Any thoughts or ideas is welcome

Thank you for your attention! Question?

