Werkaarders in hoogspanningslijnen CIGRE B2 Themadag op 5 maart 2025

Considerations for temporary earthing in compact and heavy loaded OHL

Ebbo DE MEULEMEESTER *	Ranjan BHUYAN	Dhruvi SHUKLA
DNV	TenneT TSO	DNV
The Netherlands	The Netherlands	The Netherlands
ebbo.demeulemeester@dnv.com	ranjan.bhuyan@tennet.eu	dhruvi.shukla@dnv.com

Pragati KIDAMBI DNV The Netherlands pragati.kidambi@dnv.com Christiaan ENGELBRECHT DNV / Technical University Delft The Netherlands c.s.engelbrecht@ieee.org

Werkaarders in hoogspanningslijnen

Werkaarder = "Portable earthing device" (PED)

Ebbo de Meulemeester / Principal Consultant T&D Technology

05 March 2025

Introduction

- Trends in OHL due to energy transition:
 - Higher loading : Increased induced currents and voltages
 - Compact design : Increased coupling between phases
 - Multiple circuits and multiple voltage in one tower
- TenneT and DNV investigated potential effects:
 - Voltage unbalance : grid code limits
 - Protection malfunction
 - Substation earthing switches
 - Induced currents and voltages may exceed values according IEC
 - Personal safety for line workers
 - Induced currents and voltages in PED
 - Subject of Cigre paper 2024 and this contribution

Introduction

- Trends in OHL due to energy transition:
 - Higher loading : Increased induced currents and voltages
 - Compact design : Increased coupling between phases
 - Multiple circuits and multiple voltage in one tower
- Temporary earthing in OHL with Portable Earthing Device (PED)
- Video of PED removal in 765 kV OHL
 - 765kV OHL
 - -2 PEDs in parallel
 - At removing of the last, arcing occurs

Temporary earthing in OHL

- Safe working in OHL
 - Circuit earthed at both ends in the substation
 - Other circuits in tower may remain in service
 - Application of temporary earthing at work tower (to limit voltage at work location)
 - Application of bracket earthing in neighbouring towers
- Temporary earthing by Portable Earthing Device (PED)
 - Stick type
 - Drop-on type (valaarder)
- PED IEC 61230 requirements
 - Mechanical requirements
 - Short-circuit withstand capability
 - No other electrical requirements

ATP simulations - Induced PED currents & voltages

- <u>PED current</u>: current through PED
- <u>PED voltage</u>: voltage between tower and (HV) conductor at the location where the PED will be installed

Mast configuratie	PED in circuit	Design Transpos. current distance		Maximum PED voltage	Maximum PED current
		[A]	[km]	[V]	[A]
WITH transpositions					
Donau - 2x 400 kV (existing)	400 kV	2500	16.7	1125	235
Donau - 2x 400 kV	400 kV	4000	16.7	1800	375
Donau - 2x 150 kV	150 kV	1925	16.7	1000	150
Moldau - 2x 400 kV / 2x 150 kV	400 kV	4000 / 1925	16.7 / 5.6	1750	400
Moldau - 2x 400 kV / 2x 150 kV	150 kV	4000 / 1925	16.7 / 5.6	1550	450
WITHOUT transpositions					
Donau - 2x 400 kV	400 kV	4000	none	10	10
Moldau -2x 400 kV / 2x 150 kV	400 kV	4000 / 1925	none	10	5
Moldau -2x 400 kV / 2x 150 kV	150 kV	4000 / 1925	none	10	5

ATP simulations - Induced PED currents & voltages

- PED current : current through PED
- <u>PED voltage</u>: voltage between tower and (HV) conductor at the location where the PED will be installed

Mast configuratie	PED in circuit	Design current	Transpos. distance	Maximum PED voltage	Maximum PED current
		[A]	[km]	[V]	[A]
WITH transpositions					
Donau - 2x 400 kV (existing)	400 kV	2500	16.7	1125	235
Donau - 2x 400 kV	400 kV	4000	16.7	1800	375
Donau - 2x 150 kV	150 kV	1925	16.7	1000	150
Moldau - 2x 400 kV / 2x 150 kV	400 kV	4000 / 1925	16.7 / 5.6	1750	400
Moldau - 2x 400 kV / 2x 150 kV	150 kV	4000 / 1925	16.7 / 5.6	1550	450
WITHOUT transpositions					
Donau - 2x 400 kV	400 kV	4000	none	10	10
Moldau -2x 400 kV / 2x 150 kV	400 kV	4000 / 1925	none	10	5
Moldau -2x 400 kV / 2x 150 kV	150 kV	4000 / 1925	none	10	5

> PED currents and voltages can be high in circuits with transpositions

> PED currents and voltages are very low in circuits without transpositions

Impact Bracket PEDs (in neighboring towers)

- Bracket PEDs (in neighboring towers) have large influence on the PED current in the work tower
 - Bracket PED currents are higher than in the (work tower) PED (up to 825 A)
 - Work tower PED current reduces to (almost) negligible value), if bracket PEDs are applied
 - Unless the work tower is transposition tower
- Maximum PED current in case of application of bracket PEDs is 825 A (in 150kV Moldau circuit)

- Highest PED currents occur in bracket towers
- PED currents and voltages DO NOT decrease due to PEDs in bracket towers

Temperature rise PED

 Typically, earthing cables of 35 or 50 sqmm are used and upto 2 in parallel. Estimated (continuous) current carrying capability for earthing cables (in parallel) is:

Number parallel PED	Maximum current[A]			
	35 mm²	50 mm ²	70 mm ²	95 mm ²
1	≤ 125	≤ 150	≤ 200	≤ 250
2		≤ 300	≤ 400	≤ 500
3		≤ 450	≤ 600	≤ 750
4			≤ 800	≤ 1000

- Induced PED currents are continuous currents upto 825 A
- More PEDs with higher cross-section have to installed in parallel for highly loaded circuits
- Special attention needed for removal (and installation) of parallel PEDs:
 - Need to be removed within a short (defined) time
 - Otherwise temperature of remaining PEDs will rise rapidly

Arcing during removal (or installation) of PED

- During removal of a PED, an arc will occur due to the interruption of the PED current and the PED (recovery) voltage
- The arc will extinguish at the so-called "natural arc extinction distance": distance at which free burning arc (in air) will extinguish without external or additional support.

- Tests have been performed with (dummy) PED (Damstra lab, Eaton, Hengelo)
- HS video PED arc (ca. 2000 V/ 500 A)

- User experience: 2x 400kV / 2500 A :
 - PED current / voltage = 1125 A / 235 V
- 5 V 🖌

X

- Natural arc extinction distance = ca. 25 cm
- Maximum (from calculations) :
 - PED current / voltage= 1750 A / 400 V
 - Natural arc extinction distance = ca. 45 cm

Tower step & touch voltage

- Step & touch voltage are determined by tower voltage and voltage profile
 - Step & touch voltage < tower voltage</p>
- The voltage profile varies with the tower conditions (construction, soil resistivity, ...)
- Comparison is made for tower voltages without and with application of PEDs
- The tower voltages change due to the application of PEDs
- But, the maximum values for without and with PED are the same

Conclusions

- Heavy loaded OHL and/or multi-circuit multi-voltage OHL high induced currents in the PED or across the PED (location) may occur in circuits with transpositions
 - PED voltage up to 2000V
 - PED current up to 800 A
- PED currents and voltages in circuits without transpositions are low
- IEC standards for PED DO NOT take into account effects of high PED currents and voltages:
 - Temperature rise
 - Length of arcing and related safety issues / perception
 - Effect of arcing (ageing)
- High PED currents require
 - Several PEDs to be installed in parallel
 - Removal and application of parallel PEDs have to be realized in a defined (short) time.
- Step & touch voltage do not to change due to application of PED

WHEN TRUST MATTERS

Thanks

ebbo.demeulemeester@dnv.com +31.6.1506.3320

www.dnv.com

13 DNV © 05 MARCH 2025 EDM250304

